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1.  Background

The most radical change to numerical weather prediction (NWP) during the last

decade has been the operational implementation of ensemble forecast methods.   Rather

than applying all of the available computational resources to a single, highest-resolution

simulation, some portion are allocated to an ensemble with somewhat reduced-resolution.

Ensemble forecasts offer a way of filtering the predictable from the unpredictable through

averaging – the features that are consistent among ensemble members are preserved,

while those that are inconsistent are reduced in amplitude.  Perhaps more important,  the

ensemble itself, as a sample from possible forecast outcomes, can be used to estimate the

forecast uncertainty and the likely structure of forecast errors.

The first operational implementations consisted of a trial of a few to a few dozen

global ensemble forecasts initialized from a variety of slightly different initial conditions.

Ten years later, ensemble forecasting is arguably the mainstay of medium-range NWP

and is being integrated into short-range NWP. Ensembles of forecasts now commonly are

based on multiple models or model configurations as well as multiple initial conditions.

A wide variety of techniques have been developed for extracting information from

ensembles and presenting the voluminous data to forecasters and sophisticated users.

Techniques have also been developed for using the information on forecast uncertainty in

the data assimilation process.

A previous workshop on ensemble forecasting was held in September, 1999, at

the National Center for Atmospheric Research.  A summary of this meeting was

discussed in Hamill et al (2000).   Four years later, we convened again in Val-Morin,

Quebec from 18-20 September 2003 to assess the state of the art of ensemble forecasting,
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to discuss the most substantial problems, and to map research directions for the coming

years.

Before discussing the workshop itself, let’s consider the research progress made

through the last four years.   Clearly, ensemble forecast research is growing rapidly.

Over 100 peer-reviewed articles on ensemble forecasting have been published since the

last workshop in 1999, a larger number than in all the years before 1999.  Further, this

publication count does not include articles on ensemble-forecast related topics such as

adaptive observations, basic predictability research, ensemble forecasting of climate, or

applications to oceanography or other geosciences.

One very active area of research involves methods for initializing ensemble

forecasts.   Ideally, the initial perturbations would be sampled from the probability

distribution of plausible analysis states (e.g., Ehrendorfer and Tribbia 1997, Hamill et al.

2003).   In practice, however, operational centers attempt to approximate this ideal using

various strategies. The European Centre for Medium-Range Weather Forecasts

(ECMWF) uses a “singular vector” technique, whereby the perturbations are specifically

designed to grow as rapidly as possible over the first few days of the forecast (e.g.,

Molteni et al. 1996).  The National Centers for Environmental Prediction (NCEP) uses a

“breeding” technique (Toth and Kalnay, 1993, 1997) that produces perturbations

reflecting where errors have grown quickly in the recent past.  The Canadian

Meteorological Centre (CMC) uses a “perturbed observation” approach (Houtekamer et

al. 1996), where parallel cycles of first-guess forecasts are updated to distinct sets of

perturbed observations, producing an ensemble of analyses.
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Research continues into methods for initializing ensemble forecasts.  The

dynamical and statistical properties of singular-vector ensembles have been widely

studied (Barkmeijer et al. 1999, Reynolds and Palmer, 1999, Reynolds and Rosmond

2003, Hamill et al. 2003, Gelaro et al. 2002), examined for application to short-range,

limited-area modeling (Ehrendorfer et al. 1999, Frogner and Iversen 2001, 2002,

Hersbach et al. 2000, 2003), and for generating perturbations in the tropics (Barkmeijer et

al., 2001, Puri et al. 2001, Zhang and Krishnamurti, 1999).  The characteristics of bred

vectors have been considered (Errico and Langland 1999, Toth et al. 1999, Patil et al.

2001).  New approaches to generating perturbations such as the Ensemble Transform

Kalman Filter (ETKF; Bishop et al. 2001, Wang and Bishop 2003, 2004) and the

“indistinguishable states” approach (Judd and Smith 2001) have been developed that

more closely attempt to sample the distribution of analysis states.  And a range of

comparisons of the various perturbation methods has been performed (Trevisan et al.

2001, Cheung 2001, Miller et al. 2002, Hamill et al. 2003, Wang and Bishop 2003).

A different approach to generating initial conditions is ensemble data

assimilation.  Rather than generating perturbations in some manner around a control

analysis, ensemble data assimilation methods conduct an ensemble of parallel data

assimilation cycles, like the exisiting operational scheme at CMC.  Further, the ensemble

of first-guess forecasts are used to estimate flow-dependent forecast error statistics during

the assimilation, which may improve the quality of the set of analyses.  A large volume of

literature has appeared during the last four years, including Anderson (2001, 2003),

Etherton and Bishop (2003), Hamill et al. (2001), Hansen and Smith (2001), Hansen

(2002), Heemink et al. (2001), Houtekamer and Mitchell (2001), Keppenne (2000),
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Keppenne and Rienecker (2002), Lermusiaux and Robinson (1999), Miller et al. (1999),

Mitchell and Houtekamer (2002), Ott et al. (2003), Pham (2001), Reichle et al. (2002

a,b), Snyder and Zhang (2003), Verlaan and Heemink (2001), Whitaker and Hamill

(2001), and Zhang et al. (2003).  Several reviews papers are also available, including

Tippett et al. (2003), Evensen (2004), and Lorenc (2004).  To date, most of the work has

been in simplified models with synthetic data, so the applicability to actual atmospheric

data assimilation has yet to be demonstrated.  However, some recent real-data studies

suggest that ensemble-based assimilation schemes may be competitive with or superior to

existing methods (Houtekamer et al. 2004, Whitaker et al. 2004, Dowell et al. 2004).

Since ensembles of forecasts are used to assess the uncertainty in the weather

prediction, an ensemble ought to produce a realistically diverse set of simulations.  Too

often, the ensembles of forecasts unduly resemble each other.  This may be due to several

factors.  Perhaps the ensemble was started from a set of initial conditions that did not

sample the distribution of plausible analysis states.  And without question, the

imperfections in the model itself can bias the ensemble.  Forecast models may have

systematic errors, so that on average the ensemble mean may be  consistently too warm

or too dry.  Additionally, because ensemble forecasts are conducted at a finite resolution,

the full spectrum of atmospheric motions and their interactions are not properly

represented.

How problematic is model error?  Orrell et al. (2001) and Orrell (2002) suggest

that the uncertainty due to model error is dramatically larger than that contributed by

initial condition deficiencies through chaos.  A wide variety of other studies, on the other

hand, suggest the growth of errors due to initial condition deficiencies is generally larger



6

(e.g., Simmons and Hollingsworth 2002, Fig. 6).  Moreover, definitively attributing

forecast errors to initial condition deficiencies or model errors is problematic.  For

example, an infinitesimal model error incurred during the beginning of a simulation

results in a difference between forecast states that can thereafter increase in magnitude

due to chaotic processes.  Regardless of whether model error is predominant or merely

important, the ensemble forecast community recognizes that  the uncertainty of forecasts

due to model imperfections needs to be addressed in ensemble forecasting and ensemble

data assimilation.

A variety of approaches to account for forecast-model error have been proposed,

with various levels of success.  One possibility that has been explored is to conduct an

ensemble of forecasts using a variety of models (e.g., Evans et al. 2000, Krishnamurti et

al. 2000a, Mylne et al. 2002, Richardson 2001a, Wandishin et al. 2001) or a variety of

parameterizations or model configurations (e.g., Grell and Devenyi 2002, Grimit and

Mass 2002).  Another possibility is to statistically adjust the ensemble forecasts (Du et al.

2000, Krishnamurti 2000ab, Hamill et al. 2004, Legg et al. 2002, Roulston and Smith

2003).    Another possible alternative is to formulate the NWP model stochastically, so

that the uncertainty in the time tendency is simulated through the integration of random

noise (Palmer 2001, Sardeshmukh et al. 2001).    Several relevant studies of model error

have also been performed in the last few years in simple systems (e.g. Smith et al. 1999,

Vannitsem and Toth 2002) and more complex ones (Tribbia and Baumhefner 2003).

Much of what the community has learned about the characteristics of ensemble

forecasts has come through synoptic evaluations and verification studies (e.g., Atger

2001, Bright and Mullen 2002, Buizza et al. 2000, 2001, Buizza and Chessa 2002, Buizza
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and Hollingsworth 2001, Colucci et al. 1999, Ebert 2001, Mass et al. 2003, Molteni and

Buizza 1999, Pelly and Hoskins 2003, Roulston et al. 2003, Sanders et al. 2000, Toth et

al. 2001, Watson and Colucci 2002).  Several studies have shown the beneficial effects of

higher resolution in ensemble forecasts, which generally increases their spread (Buizza et

al. 2003, Elmore et al. 2002ab, 2003, Grimit and Mass 2002, Hersbach et al. 2000,

Mullen and Buizza 2002, Szunyogh and Toth 2002), the aspects of multi-model

ensembles (Evans et al. 2000, Krishnamurti et al. 2000a, Richardson 2001a, Wandishin et

al. 2001), applications to tropical weather (Cheung 2001, Krishnamurti et al. 2000b,

Mackey and Krishnamurti 2001, Puri et al. 2001), and to medium-range weather

forecasting (Hamill et al. 2004).

Ensembles are naturally suited to producing probabilistic forecasts, and so

methods for evaluating them are required.    Tools for assessing the economic value have

become a standard way of evaluating ensemble forecasts (Buizza 2001, Mylne 2002,

Palmer 2002, Richardson 2001b, Thornes and Stephenson 2001, Wilks 2001, Zhu et al.

2002).  Other evaluation methods include alternatives to clustering methods (Atger

1999), techniques for assessing the nonlinearity of forecasts (Gilmour et al. 2001),  rank

histograms (Hamill 2001), a multidimensional extension known as the “minimum

spanning tree” (Smith 2000, Wilks 2003),  information theory diagnostics (Roulston and

Smith 2002), and other methods (e.g., Lalaurette 2003, Stephenson and Doblas-Reyes

2000, Toth et al. 2001, Wei and Toth 2003).

The rest of the summary consists of a report on the research and discussion

presented at the workshop.  There were three sessions, a session on the treatment of

model error in ensemble forecasts, the verification and use of ensemble forecasts, and
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methods for initializing ensemble forecasts, including ensemble data assimilation.

Approximately 60 scientists attended this workshop from the U.S., Canada, and Europe.

2. Summary of ensemble workshop sessions

a. Session 1: The treatment of model error

The NWP models used in ensemble forecasting are not perfect; commonly this

manifests itself in a biased ensemble with too little spread.  The first session of the

workshop discussed ways to treat model errors in ensemble forecasts.  Methods discussed

included multi-model ensembles, stochastic parameterizations, stochastic-dynamic

prediction, and other methods.

More than half of the presentations focused on model-error issues in limited-area

models. These less expensive, limited-area ensembles can be run using initial and lateral

boundary conditions supplied by operational global NWP ensemble forecasts.  Many

presentations examined the impact of running multi-models/multi-parameters/multi-

parameterization ensembles.  Plans were presented for no fewer than three operational,

regional multi-model ensemble forecast systems for Europe, as well as descriptions of

two operational multi-model/multi-analysis ensemble forecast systems in North America.

Each effort to account for model error was shown to provide positive benefits, but so far,

these results are based on techniques that are empirically rather than theoretically

justified.  To what extent is it necessary to take a multi-model/multi-parameter/multi-

parameterization approach to ensemble forecasting?   Does perturbing a model’s
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parameters provide something that perturbing physics tendencies cannot, or vice versa?

The field has not yet matured enough to provide  answers to these questions.

Several presentations demonstrated that there are methods to account for model

error that can increase ensemble forecast spread. But is the extra spread “good” spread?

Increasing a forecast ensemble’s variance does not necessarily mean that the eigenvectors

of the error covariances estimated from the ensemble are oriented in the correct

directions, or that the ensemble is located in the correct region of state space.  One

presentation dealing with empirically boosting the ensemble variance in Fourier space

demonstrated that while the magnitude of the ensemble spread can be corrected,

significant problems remain with the phase of the forecast uncertainty.  Not surprisingly,

this indicates that model error impacts the structure of forecast uncertainty as well as its

magnitude.  Another presentation clearly demonstrated the benefits of multi-model and

multi-physics ensembles for quantitative precipitation forecasting.  This result suggests

that the multi-model/multi-physics approach is capable of making important structural

changes to the forecast uncertainty.

Will it be possible to disentangle the forecast error due to model error from the

forecast error due to initial-condition error and boundary-condition error?   Many

examinations of model error assumed that the ensemble of initial conditions properly

sample the analysis-error uncertainty and the boundary conditions provide suitable large-

scale variability.  If these assumptions are wrong, then errors in the forecast ensemble

cannot be definitively attributed to one problem or the other.  This highlights the

continuing importance of research on methods for generating initial conditions (section
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2c).  If initial and boundary conditions can be properly designed, then subsequent

forecast error can more realistically be attributed to model error.

b. Session 2: Verification and use of ensemble forecasts

This session included talks on new methods for ensemble verification, use of

ensembles and economic value studies, methods of communicating information from

ensembles, post-processing methods, regional experiments, and predictability studies.

Several talks and ensuing discussion concentrated on the validation of ensemble

forecasts.  A goal of ensemble forecasting is to produce as sharp as possible a forecast

PDF that is still reliable. Accurately validating ensemble forecasts is complicated by

three factors, the observational error, the finiteness (N) of the ensemble size, and the

finiteness of the number of cases that are evaluated (M).  The imperfect nature of the

validation data, whether from observations or gridded analyses, has historically not been

considered in probabilistic verification studies. A presentation at the workshop showed

that it is theoretically preferable and feasible to build a verification system that treats the

validation data as a random variable. The other two complications are sampling issues.

Even if an ensemble draws from the appropriate PDF, probability estimates based on

ensemble relative frequency will become more inaccurate as N decreases.  Furthermore,

assessing the reliability of these probabilistic forecasts is difficult without M being very

large, especially when assessing the reliability of rare events.  Given these inherent

limitations, it was discussed that ensemble validation ought to regularly include

information on the uncertainty of the results such as confidence intervals.
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Several case studies illustrated the strengths and weaknesses of current ensemble

forecast systems. One study showed that none of the operational analyses from the major

forecast centers correctly initialized a developing storm in the eastern Pacific.  None of

the subsequent numerical predictions correctly forecast the landfall of the subsequent

storm.  This illustrates that there are still weaknesses in data assimilation and methods for

initializing ensemble forecasts.  Another presentation showed that short-range ensembles

for two U.S. East-Coast snowstorms varied in their performance.  In one case the

ensemble provided valuable additional information to the deterministic run, indicating the

possibility of a snowstorm, while in another case, every ensemble member missed the

snowstorm.

Presentations by researchers at ECMWF, NCEP, and several other institutions

indicated that progress is being made to improve the operational ensemble forecasts.

The current ECMWF ensemble was shown to have positive spread-skill relationships and

on average provides probabilistic forecasts with greater economic value than their

corresponding deterministic forecast.  However, ECMWF has noted several severe-

weather cases where the ensemble forecasts did not encompass the actual severe weather

event.  Accordingly, they plan to increase the resolution of their ensemble, update their

method of determining initial conditions to include “moist singular vectors”  (Barkmeijer

et al. 2001), and make several other changes.   NCEP is exploring a different method of

generating initial perturbations, using the ensemble transform Kalman filter (Wang and

Bishop 2003).  They are also increasing the resolution of their global ensemble, adding

more members, and exploring methods of treating model error and ensemble-based data

assimilation methods.
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An ensemble modeling system that produces perfectly calibrated forecasts

directly from the raw ensemble counts is likely to remain an elusive goal over the next

several years.  Hence, post-processing of output from ensemble forecast systems was

broadly discussed .  All viable processing schemes appear capable of significantly

improving reliability, but commonly, the post-processing techniques cannot sharpen the

forecasts while improving reliability.  A range of post-processing techniques were

discussed, from model-output statistics approaches (Hamill et al. 2004) to “Bayesian

model averaging” (Kass and Raftery 1995).  The length of ensemble output needed for

training was a subject of debate. Simple bias removal in error-prone models might require

only a short training period of a few weeks to provide some benefit, but for other

applications such as medium-range forecasting, years of training data may be needed to

achieve optimal results.

c. Session 3: Methods of generating initial conditions and ensemble data assimilation

The session covered methods of generating initial conditions for ensemble

forecasts, including research in ensemble-based data assimilation methodologies.  The

session began with talks that focused on the generation of initial conditions.  These

included the generalization of the breeding technique to systems with multiple time scales

and the ETKF as an alternative approach to singular vectors and breeding.

The majority of presentations dealt with ensemble data assimilation, consistent

with its emergence as an area of substantial research activity over the last four years.

(Indeed, even the generation of ensemble perturbations via the ETKF is closely related to
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ensemble data assimilation.)  Numerous ensemble assimilation methods were presented

and discussed, but almost all of these were similar in their broad outline, particularly in

their use of: (1) an ensemble of nonlinear forecasts to estimate statistics of short-range

(background) forecast of both model variables and observed variables; (2) an analysis

step much like the standard Kalman filter, and (3) an explicit assumption that forecast

error correlations are significant only over limited distances.  The details of the various

methods differ, however.  Many of the differences reside in the analysis step.  Some

methods process each observation sequentially while others compute analysis increments

in one step based on all the observations valid at a given time (or at least using batches of

observations in a given region).  Some methods also include numerical approximations in

the calculation of the analysis, for example to improve parallelization in distributed-

memory computing architectures.  Some methods were stochastic, treating the

observations as random variables, while others were deterministic.

The methods presented at the workshop also differed in how they accounted for

the uncertainty produced by errors in forecast model and by sampling errors in the

assimilation algorithm itself.  In all cases, this additional uncertainty was accounted for

by increasing the spread of the forecast ensemble through empirical/ad hoc methods.

Both additive approaches, in which noise drawn from a known distribution is added to

the forecast ensemble, and multiplicative approaches, in which the deviations from the

ensemble mean are increased by a scalar factor, are being explored.  Bias correction

techniques are also being explored (see section 2a).

The presentations also considered a variety of applications for ensemble data

assimilation schemes.  Several of the presentations, along with much of the existing
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literature in the atmospheric sciences, concentrated on global- and synoptic-scale flows

(with an eye to algorithms suitable for operational numerical weather prediction).  In

addition, participants in the workshop presented studies focusing on the tropical ocean,

atmospheric meso- and convective-scale flows, limited-area models, and soil moisture

analyses.

Several broad conclusions and issues emerged from the discussion at the

workshop:

1.  Research in a variety of application has now shown that ensemble assimilation

schemes work well in experiments with simulated observations and a perfect forecast

model.  Early results with real observations are, perhaps not surprisingly, more

mixed.  Further experience with real observations will clearly be necessary in order to

have a better grasp of the capabilities of ensemble data assimilation and to compare

the advantages and disadvantages of different schemes.

2. As with ensemble forecasting in general, there is a need to improve the way in

which errors in the forecast model are accounted for in ensemble assimilation

schemes.   Many existing schemes use very simple techniques in this regard; because

they attempt direct and time-evolving estimates of forecast-error covariances, their

performance may well be significantly limited by their treatment of model error.

3. Additional tools are needed for diagnosing the performance of ensemble

assimilation schemes.  While diagnostics may be (and have been) borrowed from

ensemble forecasting or data assimilation, ensemble data assimilation poses specific

questions that have not been extensively explored elsewhere, such as the quality of

estimated covariances.
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4. The role of nonlinear and non-Gaussian effects in data assimilation and their

treatment in ensemble assimilation schemes remains an open question.  One approach

put forward at the workshop was to develop models for forecast error statistics using

variables or coordinates for which the errors are more nearly Gaussian, such as

considering displacement errors of coherent features.

3. Summary

A workshop on ensemble forecasting was held in Val-Morin, Quebec, from 18-20

September 2003.  The meeting discussed recent and current research on ensemble

forecasts.  The workshop consisted of a session on methods for initializing ensemble

forecasts, including ensemble data assimilation, a session on model error, and a session

on the use and interpretation of ensemble forecasts.  A theme running through all three

sessions was the effects of model error on ensemble forecasts.  Model error biases the

ensemble and results in a lack of spread. Methods are being formulated for diagnosing

and treating model error directly in ensemble forecasts, estimating its effects in ensemble

data assimilation, and correcting it through post-processing to produce calibrated

probability forecasts.
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